

Sample Size Re-estimation in the Context of Dual Endpoints Using a Promising Zone Approach – Illustrated with Two Pharmaceutical Case Studies

Parvin Fardipour, PhD Parvin.Fardipour@Cytel.com

Journey to Develop SSR for Two Endpoints

- 1. Regulatory and Pharma positions
- 2. Support the clinical team to assess the requirements for SSR Using two case studies
 - Develop the fixed design for the best effect size (Es_{best}) and minimal meaningful effect size (Es_{min})
 - Discuss the motivation for SSR that address the requirements to support Es_{best} to Es_{min}
- 3. Develop 2-stage design
 - Timing of interim depends on the recruitment rate and sufficient availability of data to make a meaningful decision
 - Maximum sample size for the SSR
 - Decision Rules at interim by DMC
- 4. Verify and Validate your design assumptions through simulations
 - Follow the process flow for developing SSR design
 - Write a simulation report that documents decision rules, methodology, etc.

Regulatory position: Adaptive Design Concept

An adaptive design is

• Any study that includes prospectively planned opportunity for modification

An adaptive design uses accumulating data to decide on how to modify aspect of the study

- By pre-specify decision rules and,
- Without undermining the validity and integrity of the trial

Pharma Position: Uncertainties and Adaptive Insurance Solutions

Case Study 1:

Negative Symptoms Schizophrenia – Single Primary Endpoint

- New drug versus placebo for treatment of negative symptoms schizophrenia
- Primary endpoint is the change in negative symptoms assessment (NSA) at week 26 relative to the baseline assessment
- Based on the limited information available sponsor powers the trial to detect a 2-point improvement (δ = 2 with σ = 7.5) with respect to NSA
- 8% dropout is anticipated
- Sponsor would like some insurance against power loss in case $\delta = 1.6$, the smallest clinically important effect

Where people appear to withdraw from the world around then, take no interest in everyday social interactions, and often appear emotionless and flat

Case Study 1: Operating Characteristics of the Fixed Design - Des 1, Des 2

	Des 1 – Fixed – Underpowered for δ = 1.6 σ = 7.5		Des 2 – Fixed – Overpowered for $\delta = 2$ $\sigma = 7.5$	
δ	Sample size	Power	Sample size	Power
1.6	442	61%	690	80%
1.7	442	66%	690	84%
1.8	442	71%	690	88%
1.9	442	76%	690	91%
2	442	80%	690	94%

We first create a single-look **Des 1 design** with 80% power to detect δ = 2 using a one-sided level 0.025 test, given σ = 7.5. With these design parameters, we can show that **Des 1** will be fully powered if a total of 442 subjects are enrolled (221/arm) There is, however, considerable uncertainty about the true value of δ . Nevertheless, it is believed that even if the true value of were as low as 1.6 on the NSA scale, that would **constitute a clinically meaningful effect**

We therefore also create **Des 2**, having 80% power to detect δ = 1.6 using a one-sided level-0.025 test, given σ = 7.5. **Des 2** requires a total sample size of 690 subjects (345/arm)

> We will consider two types of flexible designs: Group sequential and group sequential with SSR

Case Study 1: Motivation for Mid-Course Sample Size Correction in Pivotal Trials – Des 3

- The typical fixed sample design, data is only analyzed once at the conclusion of the trial
- Group sequential has patients entering in *groups*; Data is analyzed at a certain number of specified stopping points – *when 208 completers are available*
- We don't know what δ and σ to power the study for Prior experience limited to small pilot studies
- Hence, is makes sense to do a 2-stage design where there is an opportunity to assess the performance of the drug through GSD and then change the sample size based on the observed effect size at interim – we design for the best effect size but also plan for the minimal acceptable effect size through interim analysis and SSR implementation

Recall, the current interest is to ensure that the design had sufficient sample size if the effect size between 1.6 to 2.0

Test Parameters – Des 3		Sample Size Re-estimation – Des 3		
Simulation ID	CHWSim1	Method of Adaptation	Cui-Hung- Wang	
Design Type	Superiority	Adapt At Look No.	1	
Number of Looks	2	Max. Sample Size if Ada	apt	
Test Type	1-Sided	Multiplier	1.561	
Sample Size (n)	442	Total #	690	
Completers @ look 1	208	Study Duration	243.75	
Pipeline @ look 1	208	Target CP	0.8	
Variance	Equal	Promising Zone Scale	Cond. Power	
Test Statistic	t	Min. CP	0.57	
Avg. Power	0.805	Max. CP	0.8	
Response Generation	Parameters	Promising Zone de	efined as	
Mean Control (µ _c)	0	0.57 ≤ CP < 0	0.8	
Mean Treatment (µt)	2	Zone	%	
SD Control (σ_c)	7.5	Futility	0.00%	
SD Treatment (σ)	7.5	Unfavorable	31.28%	
		Promising	13.12%	
Simulation Control Parameters		Favorable	55.54%	
Number of Simulations	10000	Efficacy	0.06%	

Case Study 1: Process Flow to do an GSD with SSR

Information Gathering

Discuss with the study team and assess:

- 1. What is a minimum effect size to consider that we have a viable therapy?
- 2. What is the optimal effect size that we hope to achieve in this new therapy?
- 3. What is the recruitment rate, dropout rate, endpoint(s) of interest that we want to market the new therapy?
- 4. What are the interim analysis requirements (futility, efficacy)

Cutel

 Are there any early read-out that can be used to assess the performance of the primary endpoint (is useful for the endpoint that have long-period to assess completers performance

Agree on the maximum sample size

requirements based on the minimum

effect size of the interest – e.g., 690

completers

Assess what the minimum sample size

that the team is willing to commit to

start the study - e.g., 208 completers

Case Study 1: Extended to be two endpoints

- Suppose there is a second regulatory requirement that the new treatment must also show benefit in Quality-of-Life Scale (QLS) questionnaire which is a secondary endpoint in this trial. Because there exists no previous experience with QLS in negative symptoms patients, no notion of what constitutes a clinically meaningful effect is available
- However, suppose from the literature, the teams assumes that for this score of 0.28 with standard deviation of 1.2 is clinically meaningful. Furthermore, the team believes that the score of 0.23 with standard deviation of 1.2 can be considered as minimally acceptable results for this endpoint
- Designs **des 4** and **des 5** represents the sample size for these effect sizes

Des 4			Des 5 Deword for $5 = 0.22$			
Powered for $\mathbf{o} = 0.28$			Powered for $\mathbf{o} = 0.23$			
2	D = 7.2	Completera	2	$\overline{\Sigma}$ Device Completes		
0	Fower	Completers	0	Fower	Completers	
0.2	51.64%		0.2	68.30%		
0.21	55.62%		0.21	72.51%		
0.22	59.53%		0.22	76.42%		
0.23	63.36%		0.23	80.00%		
0.24	67.05%		0.24	83.23%		
0.25	70.59%	577	0.25	86.11%	855	
0.26	73.94%		0.26	88.63%		
0.27	77.08%		0.27	90.81%		
0.28	80.00%		0.28	92.66%		
0.29	82.68%		0.29	94.21%		
0.3	85.12%		0.3	95.49%		

If δ = 0.28, then the SS increase of =690 for the primary is sufficient but if δ = 0.23, then SS increase of = 690 is not sufficient

How do we do an SSR design to address the requirements for both endpoints?

Case Study 1: Discussion – Fixed Sequence Procedure

Primary End	point	Secondary Endpoint		
Best Effect size	Minimal meaningful effect size	Best Effect size	Minimal meaningful effect size	
μ = 2, σ =7.5, SS = 442 Completers = 208	μ = 1.6, σ =7.5 SS = 690	μ = 0.28, σ =1.2 SS = 577	μ = 0.23, σ =1.2 SS = 855	

- Calculate the timing for the interim, which is 208/442 = 0.47
- Take the maximum SS increase (SSR upper limit) that can be used to assess the performance of both endpoints within the required effects size ranges for both endpoints;
 - That is Max_SS =855 satisfies both primary and secondary requirements
- Calculate the SSR increase factor, which is Max_SS / SS_Original; that is 855/442 = 1.93
 - Ensure that the team are ok with the Max_SS value
- Ask if there is a correlation between the endpoints it plays a role in the simulation

Hope for the best but prepare for the worst

Case Study 1 Extended : Primary Simulation Results

Test Parameters				
Simulation ID	CHWSim_P			
Design Type	Superiority			
Number of Looks	2			
Test Type	1-Sided			
Sample Size (n)	442			
Completers @ look 1	208			
Pipeline @ look 1	208			
Variance	Equal			
Test Statistic	t			
Avg. Power	0.83			
Response Generation Parameters				
Mean Control (µ _c)	0			
Mean Treatment (µ _t)	2			
SD Control (σ_c)	7.5			
SD Treatment (σ_t)	7.5			
Simulation Control Parameters				
Number of Simulations	10000			

Sample Size Re-estimation – Des 6				
Method of Adaptation	Cui-Hung-Wang			
Adapt At Look No.	1			
Max. Sample Size if Adapt				
Multiplier 1.934				
Total #	855			
Target CP	0.8			
Promising Zone	Cond. Power			
Min. CP	0.45			
Max. CP	0.8			

Promising Zone defined as 0.45 ≤ CP < 0.8 – Des 6			
Zone	%		
Futility	0.00%		
Unfavorable	25.86%		
Promising	17.83%		
Favorable	56.27%		
Efficacy	0.04%		

CP %	New SS	μ
CP < 0.45	442	<1.36
$0.45 \le CP < 0.6$	855	1.36 to 1.54
0.6 ≤ CP < 0.7	640	1.55 to 1.68
0.7 ≤ CP < 0.8	530	1.69 to 1.84
CP ≥ 0.8	442	≥ 1.84

Case Study 1: Secondary Simulation Results

Test Parameters – Des 7				
Simulation ID	CHWSim_S			
Design Type	Superiority			
Number of Looks	2			
Test Type	1-Sided			
Sample Size (n)	442			
Variance	Equal			
Test Statistic	t			
Avg. Power at	<mark>0.704</mark>			
Response Generation Parameters				
Generate Data Using	Individual Means			
Mean Control (µ _c)	0			
Mean Treatment (µ _t)	0.28			
SD Control (σ_c)	1.2			
SD Treatment (σ_t)	1.2			

Sample Size Re-estimation – Des 7			
Method of Adaptation	Cui-Hung-Wang		
Adapt At Look No.	1		
Max. Sample Size if <i>i</i>	Adapt		
Multiplier	1.934		
Total #	855		
Target CP	0.8		
Promising Zone	Cond. Power		
Min. CP	0.45		
Max. CP	0.8		
Promising Zon 0.45 ≤ CP < 0	e defined as 9.8 – Des 7		
Zone	%		
Futility	0.00%		
Unfavorable	34.52%		
Promising	19.06%		
Favorable	46.40%		
Efficacy	0.02%		

Case Study 1: Process Flow - Decision Rules For Dual Endpoints – Fixed Sequence

Cytel

Case Study 1: Logistical Requirement: Tables for the Data Monitoring Committee Fixed Sequence

SSR Interim Decision Zone		Primary Endpoint				
Notification to the DMC		CP < 0.45	0.45 ≤ CP < 0.6	0.6 ≤ CP <0.7	0.7 ≤ CP <0.8	CP ≥ 0.8
	CP < 0.45	Primary				Primary
Secondary Endpoint	0.45 ≤ CP < 0.6	endpoint is in unfavorable zone and a hence the trial r continues as planned with the original r sample size	Primary endpoint is the driver	Primary endpoint requires 640 so the minimum SS for this boundary is 640	Primary endpoint requires 530 so the minimum SS for this boundary is 530	endpoint requires 440 so the minimum SS for this boundary is 442 – which is the minimum SS
	0.6 ≤ CP < 0.7		zone and and requires hence the the trial maximum SS			
	0.7 ≤ CP < 0.8		th which is the al maximum SS			
	CP ≥ 0.8	which is 440				allowed

Note that SSR is driven by the primary endpoint effect size (fixed sequence testing)

Ę

Case Study 2: Lung Disease – Fallback Sequence

- Forced expiratory volume in the first second (FEV1) can be useful to categorize the severity of obstructive lung diseases, such as asthma and chronic obstructive pulmonary disease (COPD)
- The sponsor that is engaged in developing a drug for this therapeutic area, is also interested in testing the Forced vital capacity (FVC) which is the total amount of air exhaled during the FEV test as a co-primary endpoint
- Let us consider a trial with FEV1 as it's primary endpoint and FVC as it's coprimary endpoint
- The operating characteristics of this trial are as follows:
 - Active vs placebo
 - \circ FEV1 the effect size (µ/s) ranges from 0.41 to 0.53
 - Power = 90
 - o a = 0.05
 - FVC difference of proportion of 0.14 to 0.19 with $\pi c = 0.05$ and $\pi t = (0.1, 0.11, 0.12, 0.13, 0.14)$
- Further discussion leads to conclusion that the client would like to claim success on both endpoints

Case Study 2: Comparison of Effect Size vs Power

Forced expiratory volume in the first second (FEV1)					
Test Parameters	Minimal-Clinical- Significance Design	Best Expected Design			
Design Type	Superiority	Superiority			
No. of Looks	1	1			
Test Type	1-Sided	1-Sided			
Specified a	0.025	0.025			
Power	0.901	0.901			
Model Parameter	S				
Allocation Ratio	1	1			
Input Method	Standardized Diff. o	f Means			
Standardized Diff. ((μt- μc)/σ)	0.41	0.53			
Test Statistic	Z	Z			
Maximum Sample Size	251	150			
Maximum Duration	83.375	79.25			

Forced vital capacity (FVC)					
Test Parameters	Minimal-Clinical- Significance Design	Best Expected Design			
Design Type	Superiority	Superiority			
No. of Looks	1	1			
Test Type	1-Sided	1-Sided			
Specified a	0.025	0.025			
Power	0.9	0.9			
Model Parameters	Model Parameters				
Allocation Ratio	1	1			
Proportion under Control (πc)	0.05	0.05			
Proportion under Treatment (πt)	0.15	0.19			
Diff. in Prop. (πt - πc)	0.1	0.14			
Variance	Unpooled Estimate				
Maximum Sample Size	368	216			
Maximum Duration	98	79			

Case Study 2: Discussion – Fallback Sequence

Primary Endpoint		Co-Primary Endpoint		
Best Effect Size	Minimal Acceptable Effect Size	Best Effect Size	Minimal Acceptable Effect Size	
Effect size: 0.53 SS = 150	Effect size: 0.41 SS = 251	Diff in Proposition: 0.14 SS = 216	Diff in Proposition: 0.1 SS = 368	

- Considering IA when 50% of subjects completed 52 weeks
- Start with the minimal effect size for the primary and co-primary = 216
- The timing for the interim analysis is around 50%
- **Take** the maximum SS that can be used to assess the performance of both endpoints within the required effects size ranges for both endpoints;
 - That is Max_SS =368 satisfies both primary and co-primary endpoint
- Calculate the SSR increase factor, which is Max_SS / SS_Original; that is 368/216 = 1.7
 - Ensure that the team are ok with the Max_SS value
- Ask if there is a correlation between the endpoints it plays a role in the simulation

Note: Green = rejection

Initial

Case Study 2: Process Flow - Decision Rules For Dual Endpoints – Fallback Sequence

Cytel

Case Study 2: Simulation Results

Completers: 127 for both endpoints

Promising Zone defined as 0.64 ≤ CP < 0.971 Primary		Promising Zone defined as 0.64 ≤ CP < 0.9 Co-Primary		
Zone	%	Zone	%	
Futility	0.55%	Futility	3.42%	
Unfavorable	9.30%	Unfavorable	18.61%	
Promising	19.68%	Promising	17.21%	
Favorable	9.10%	Favorable	24.06%	
Efficacy	61.37%	Efficacy	36.70%	

Primary				
СР	New SS	((μt- μc)/σ)		
CP < 0.6	216	<0.305		
0.64 ≤ CP < 0.7	368	0.305		
0.7 ≤ CP < 0.8	330	0.316		
$0.8 \le CP < 0.9$	270	0.345		
CP ≥ 0.9	216	≥ 0.39		

The trial is overpowered for the primary by (216/150 = 1.44) to satisfy the co-primary endpoint

Co-Primary				
СР	New SS	(πt)		
CP < 0.6	216	<0.141		
0.64 ≤ CP < 0.7	368	0.141 to 0.154		
0.7 ≤ CP < 0.8	320	0.155 to 0.18		
0.8 ≤ CP < 0.9	260	0.18 to 0.19		
CP ≥ 0.9	216	≥ 0.199		

Note: The πc = 0.05

Case Study 2: Logistical Requirement: Tables for the Data Monitoring Committee – Fallback Sequence

SSR Interim Decision Zone		Primary Endpoint - Standardized difference of means is 0.41 to 0.53					
Notification to the DMC		CP < 0.6	0.64 ≤ CP < 0.7	0.7 ≤ CP < 0.8	0.8 ≤ CP < 0.9	CP ≥ 0.9	9
	CP < 0.6	216			Г		
Secondary Endpoint - Difference of Proportion $0.1 \text{ to } 0.14 \le CP < 0.7$ $0.64 \le CP < 0.7$ $0.7 \le CP < 0.8$ $0.8 \le CP < 0.9$		368			216		
			330				
	0.8 ≤ CP < 0.9	21	16		270		
	CP ≥ 0.9					216	

Take the maximum SS required by both endpoints

Concluding Remarks

- Adaptive trials require a considerable amount of planning up-front. One of the most versatile tools for the planning phase is simulation
- The simulations clarify the risks and benefits of the proposed approach by putting probabilities on each possible outcome
- > The simulations facilitate better communication with the regulatory agencies
- The simulations facilitate greater communication between the various members of the study team by showing how different design options and trial outcomes will have different implications for:
 - Patient recruitment
 - Drug supply
 - Economic analyses
 - Clinical outcomes
 - Statistical power
 - Regulatory concerns

Assessing SSR Zones Based on the requirements

Testing Approach

•Fixed Sequence Procedure

- Stepwise multiple testing procedure
- The endpoints are ordered according to their importance
- \circ All tests will be performed at level α following the prespecified order
- Assume $H1 \rightarrow H2$
 - That is, *H*1 is more important than *H*2

Fallback Sequence Procedure

- same as fixed sequence procedure. Hypotheses are tested in an a priori order at the full alpha level (same as fixed sequence procedure)
- The difference of the fallback procedure from the fixed sequence test is that the full alpha of 0.05 is split for endpoints in a pre-specified order (based on the clinical relevance) and the hypotheses in late order can still be tested (but with different alpha levels) if the previous hypothesis is not rejected.

Initial

Note: Green = rejection

• In contrast to the fixed sequence procedure, the fallback procedure tests all hypotheses in the pre-specified sequence even if the initial hypotheses are not rejected

CHW Statistic

- Use CHW statistic with pre-specified weighting of data from each stage (Cui, Hung & Wang, 1999)
- The CHW statistic is

$$Z_{j,CHW}^{*} = \frac{\sqrt{w^{(1)}Z^{*(1)} + \sqrt{w^{(2)}Z^{*(2)} + \dots + \sqrt{w^{(j)}Z^{*(j)}}}}{\sqrt{w^{(1)} + w^{(2)} + \dots + w^{(j)}}}$$

• This statistic is asymptotically normally distributed with mean

$$E(Z_{j,CHW}^{*}) = \frac{\delta \sum_{l=1}^{j} \sqrt{w^{(l)} I^{*(l)}}}{\sqrt{\sum_{l=1}^{j} \sqrt{w^{(l)}}}}$$

and unit variance, where $I^{*(l)}$ is the incremental information at look l

• Cui, Hung and Wang (1999) and Lehmacher and Wassmer (1999) have shown that

 $P_0(\bigcup_{j=1}^K \left| Z_{j,CHW}^* \right| \ge b_j) = \alpha$

• Note: If no sample size change, then $Z_{j,CHW}^* = Z_{j,Wald}^*$

Conditional Power Calculations

- Adaptive sample size changes are commonly driven by conditional power or the probability, given the current data, of attaining statistical significance by the end of the study
- Suppose we are at some look L < K and the observed value of the test statistic is z_L . Conditional power for a given value of δ and total sample size n_K^* is defined as

 $CP_{\delta}(z_L, n_K^*) = P_{\delta}\{\bigcup_{j=L+1}^K (Z_{j,CHW}^* \ge b_j \mid z_L)\}$

• One may use either the value of δ specified at the design stage or the value $\delta_L^{\hat{}}$ estimated at look *L* in the above expression for CP

References about SSR Methodology

- Bhatt D.L. and Mehta C., Adaptive Designs for Clinical Trials, 2016. *N Engl Med.* 2016;375:65-74.
- Cui L, Hung HM, Wang SJ. Modification of sample size in group sequential clinical trials. Biometrics. 1999 Sep 1;55(3):853-7.
- Gao P, Ware J, Mehta C. Sample size re-estimation for adaptive sequential design in clinical trials. J Biopharm Statist. (2008) 18(6), 1184-96.
- Haybittle JL. Repeated assessment of results in clinical trial of cancer treatment. Brit.J.Radiology (1971): 44 793-797.
- Hsiao, S.T., Liu, L., Mehta, C. Optimal Promising Zone Designs, 2018. Biometric Journal, pp 1-12.
- Lan KK, and DeMets DL. "Discrete sequential boundaries for clinical trials." *Biometrika* 70, no. 3 (1983): 659-63.
- Lehmacher W, and Wassmer G. Adaptive sample size calculations in group sequential trials. *Biometrics* 55, no. 4 (1999): 1286-1290.
- Mehta C, and Pocock S. Adaptive increase in sample size when interim results are promising: A practical guide with examples. Statistics in Medicine 30, no. 28 (2011): 3267-3284.
- Pritchett, Y., Menon, S., Marchenko, O., Antonijevic, Z., Miller, E., Sanchez-Kam, M., Morgan C., Nguyen, H. and Prucka, W. Sample Size Re-estimation Designs in Confirmatory Trials Current State, Statistical Considerations, and Practical Guidance. In: Statistics and Biopharmaceuticals Research, 2015.
- Wassmer, G. "Planning and Analyzing Adaptive Group Sequential Survival Trials." *Biometrical Journal* 48, no. 4 (2006): 714-729.
- Alosh, M., Bretz, F., and Huque, M. (2014) Advanced multiplicity adjustment methods in clinical trials. Statistics in Medicine 33(4), 693-713.

References about SSR to Help Understand Regulatory Perspectives

- Adaptive Designs for Clinical Trials of Drugs and Biologics Guidance for Industry, U.S. Department of Health and Human Services, Food and Drug Administration, Center for Drug Evaluation and Research (CDER), Center for Biologics Evaluation and Research (CBER), November 2019. <u>https://www.fda.gov/media/78495/download</u>
- EMA Reflections Paper on Methodological Issues in Confirmatory Trials Planned with an Adaptive Design, 18 Oct 2007. <u>https://www.ema.europa.eu/en/documents/scientific-guideline/reflection-paper-methodological-issues-confirmatory-clinical-trials-planned-adaptive-design_en.pdf</u>
- Multiple Endpoints in Clinical Trials Guidance for Industry, Food and Drug Administration, Jan 2017, https://www.fda.gov/regulatoryinformation/search-fda-guidance-documents/multiple-endpoints-clinical-trials-guidance-industry
- Edwards, J.M, Walters, S.J. Kunz, C. Julios, S.A. (2020) A systematic review of the "promising zone" design, Trials, 21, 1000. ISSN 1745-6215 https://trialsjournal.biomedcentral.com/articles/10.1186/s13063-020-04931-w
- Liu, Y. and Xu, H. Sample size re-estimation for pivotal clinical trials. Contemporary Clinical Trials 102(2021) 106215 https://www.sciencedirect.com/science/article/pii/S1551714420302937
- Bothwell, B.E., Avorn, J. Nazleen, F.K., Kesselheim, A.S. BMJ Adaptive design clinical trials: a review of the literature and Clinical Trials.gov BMJ 2018 https://pubmed.ncbi.nlm.nih.gov/29440155/
- M. Lin, S. Lee, B. Zhen, et al., CBER's experience with adaptive design clinical trials, Ther. Innovation Regulatory Sci. 50 (2015) 195–203. https://link.springer.com/article/10.1177/2168479015604181
- X. Yang, L. Thompson, J. Chu, et al., Adaptive design practice at the Center for Devices and Radiological Health (CDRH), January 2007 to May 2013, Ther. Innovation Regulatory Sci. 50 (2016) 710–717.
- https://link.springer.com/article/10.1177%2F2168479016656027
- He., W., Gallo, P. Miller, E. Jemiai, Y. et.al. Addressing Challenges and Opportunities of "Less Well-Understood" Adaptive Designs. Therapeutic Innovation of Regulatory Science 2017. Vol. 51(1) 60-68. https://link.springer.com/article/10.1177/2168479016663265

